A Novel Wrapper-filter Hybrid Method for Candidate SNPs Selection
نویسندگان
چکیده
منابع مشابه
A hybrid wrapper / filter approach for feature subset selection
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(...
متن کاملA Hybrid Both Filter and Wrapper Feature Selection Method for Microarray Classification
expression data is widely used in disease analysis and cancer diagnosis. However, since gene expression data could contain thousands of genes simultaneously, successful microarray classification is rather difficult. Feature selection is an important pre-treatment for any classification process. Selecting a useful gene subset as a classifier not only decreases the computational time and cost, bu...
متن کاملIG-GA: A Hybrid Filter/Wrapper Method for Feature Selection of Microarray Data
Gene expression profiles have great potential as a medical diagnostic tool since they represent the state of a cell at the molecular level. Available training data sets for classification of cancer types generally have a fairly small sample size compared to the number of genes involved. This fact poses an insurmountable problem to some classification methodologies due to training data limitatio...
متن کاملHybrid filter-wrapper feature selection for short-term load forecasting
13 Selection of input features plays an important role in developing models for short14 term load forecasting (STLF). Previous studies along this line of research have focused 15 pre-dominantly on filter and wrapper methods. Given the potential value of a hybrid 16 selection scheme that includes both filter and wrapper methods in constructing an 17 appropriate pool of features, coupled with the...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOSR Journal of Computer Engineering
سال: 2016
ISSN: 2278-8727,2278-0661
DOI: 10.9790/0661-1804063138